skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Castro Vázquez, Anushka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The hydrolysis–condensation reaction of TiO 2 was adapted to the phase inversion temperature (PIT)-nano-emulsion method as a low energy approach to gain control over the size and phase purity of the resulting metal oxide particles. Three different PIT-nano-emulsion syntheses were designed, each one intended to isolate high purity rutile, anatase, and brookite phase particles. Three different emulsion systems were prepared, with a pH of either strongly acidic (H 2 O : HNO 3 , pH ∼0.5), moderately acidic (H 2 O : isopropanol, pH ∼4.5), or alkaline (H 2 O : NaOH, pH ∼12). PIT-nano-emulsion syntheses of the amorphous TiO 2 particles were conducted under these conditions, resulting in average particle diameter distributions of ∼140 d nm (strongly acidic), ∼60 d nm (moderately acidic), and ∼460 d nm (alkaline). Different thermal treatments were performed on the amorphous particles obtained from the PIT-nano-emulsion syntheses. Raman spectroscopy and powder X-ray diffraction (PXRD) were employed to corroborate that the thermally treated particles under H 2 O : HNO 3 (at 850 °C), H 2 O : NaOH (at 400 °C), and H 2 O : isopropanol (at 200 °C) yielded highly-pure rutile, anatase, and brookite phases, respectively. Herein, an experimental approach based on the PIT-nano-emulsion method is demonstrated to synthesize phase-controlled TiO 2 particles with high purity employing fewer toxic compounds, reducing the quantity of starting materials, and with a minimum energy input, particularly for the almost elusive brookite phase. 
    more » « less